IDENTIFYING QUADRATIC EQUATIONS

• For this web exercise, you need to fully understand what *terms* are. So, you may want to check these out:

<u>Recognizing Products and Sums; Identifying Factors and Terms</u>
<u>Identifying Variable Parts and Coefficients of Terms</u>

(more mathematical cats)

DEFINITION quadratic equation

Let a, b and c be real numbers, with $a \neq 0$. A *quadratic equation* is an equation of the form:

$$ax^2 + bx + c = 0$$

Important notes about the definition:

- A quadratic equation is, first and foremost, an *equation*. It must have an '=' sign.
- When mathematicians say 'an equation of the form ...' they *really* mean 'an equation that *can be put* in the form ...' by using the two primary equation-solving tools: the <u>Addition Property of Equality</u> and the <u>Multiplication Property of Equality</u>.
- A quadratic equation **must** have an x^2 term. This is what $a \neq 0$ tells us.
- A quadratic equation is allowed (but not required) to have an x term. The coefficient b might be zero, which means the x term is gone.
- A quadratic equation is allowed (but not required) to have a constant term. (Recall that a *constant* term is just a number—no variables.) The constant term, c, might be zero.

So, to check if an equation is a *quadratic* equation, you want to make two passes through it (both sides):

- Does it have an x^2 term appearing somewhere? If not, then it's not a quadratic equation. Note: it can have *lots* of x^2 terms!
- The only other two term types that are allowed are x terms and constants terms. (For example: no x^3 terms, no variables inside square roots, no variables in denominators, and so on.)

So, sweep across the equation and look for anything other than x terms and constant terms. If you find any, then it's not a quadratic equation.

EXAMPLES:

In this exercise, you will practice identifying quadratic equations.

Question: Is $x^2 = x + 4$ a quadratic equation?

Solution:

Does it have an x^2 term? Check! Anything other than x terms or constant terms? Nope. Check! YES, it is a quadratic equation.

Question: Is 3x - 4 = x + 1 a quadratic equation?

Solution:

Does it have an x^2 term? Nope. So, it's not a quadratic equation.

Question: Is $x - 2x^2 = 1 + x^5$ a quadratic equation?

Solution:

Does it have an x^2 term? Check!

Anything other than x terms or constant terms? Oops. Quadratic equations are not allowed to have an x^5 term. So, it's not a quadratic equation.